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Germany

Received 6 September 2005
Published 4 November 2005
Online at stacks.iop.org/JPhysCM/17/S3851

Abstract
Helicases are molecular motors which unwind double-stranded nucleic acids
(dsNA) in cells. Many helicases move with directional bias on single-
stranded (ss) nucleic acids, and couple their directional translocation to strand
separation. A model of the coupling between translocation and unwinding uses
an interaction potential to represent passive and active helicase mechanisms. A
passive helicase must wait for thermal fluctuations to open dsNA base pairs
before it can advance and inhibit NA closing. An active helicase directly
destabilizes dsNA base pairs, accelerating the opening rate. Here we extend this
model to include helicase unbinding from the nucleic-acid strand. The helicase
processivity depends on the form of the interaction potential. A passive helicase
has a mean attachment time which does not change between ss translocation
and ds unwinding, while an active helicase in general shows a decrease in
attachment time during unwinding relative to ss translocation. In addition, we
describe how helicase unwinding velocity and processivity vary if the base-pair
binding free energy is changed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Helicases are motor proteins which separate the two strands of helical double-stranded nucleic
acids (NA). Both DNA, RNA, and DNA–RNA hybrid helicases are found in cells. Strand
separation requires breaking the base-pairing interactions between the two strands and therefore
requires energy input. Unwinding is fuelled by NTP hydrolysis, typically of ATP. Helicases
play a role in nearly every cellular process which involves NA, including DNA replication
and repair, recombination, transcription, translation, and RNA processing [1]. Aberrant
functioning of helicases is associated with genome instability (the accumulation of damage
and errors in the genome), premature ageing, and cancer [2].
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The essential common feature of all helicases is their ability to move along NA strands
and couple motion to strand separation. (We use the terms opening, strand separation, and
unwinding interchangeably.) For this reason, helicases are also NA translocases and share
some features with other proteins which move on NA strands [3, 4].

The unwinding velocity and processivity of helicases are important for helicase function.
The unwinding velocities of helicases range from tens to thousands of base pairs per second [1].
Helicase processivity is also variable. Processivity is most often defined as the average
number of base pairs unwound per helicase binding event. Measured values of helicase
processivity range from tens to tens of thousands of base pairs [1]. The processivity can
be significantly altered by accessory proteins [5–7], polymerases [8], and multiple copies of
the same helicase [9–11]. Attachment of an enzyme either to a surface or another protein
tends to increase the processivity [12]. In single-molecule experiments on RecBCD helicase,
a lower processivity was measured for a helicase that was free in solution [13] than for a
helicase attached to the surface [14]. The velocity and processivity of helicase proteins are
thought to be related to their biological roles. For example, replicative helicases are responsible
for unwinding all cellular DNA during DNA replication. It has been proposed that replicative
helicases should therefore have a high velocity and processivity, so that a small number of
helicases can efficiently function in DNA copying. By contrast, a helicase which functions
in DNA damage repair may only need to unwind a small region of DNA near a damage site;
therefore, its velocity and processivity may be low. Understanding the physical basis of the
velocity and processivity will help illuminate how these proteins may be optimized for different
cellular roles.

Different definitions of processivity have been given in the literature. They include (i)
the average time a motor stays attached to its track, (ii) the average number of steps a motor
travels before detaching, (iii) the number of ATP molecules hydrolysed before the motor falls
off the track, and (iv) the probability that a motor takes one more step (as opposed to unbinding
before the next step). For helicases and other motors which interact with obstacles, this picture
is complicated. We may consider both the translocation processivity, which is the average
number of forward steps taken by the helicase during one binding event, and the unwinding
processivity, which is the average number of NA base pairs (bp) unwound during a helicase
binding event. The translocation and unwinding processivity are not equivalent, and their
values vary with initial conditions. Unwinding processivity is usually measured for helicases;
however, the measured value can depend on where the motor binds relative to where it begins
unwinding the NA.

Because helicase proteins are involved in a wide range of cellular processes,many different
types of helicase protein are found in cells. Even the relatively simple bacterium E. coli has at
least 11 different types of helicase. Helicases are structurally diverse, and not all helicases share
a common mechanism. However, many helicases share the ability to translocate directionally
on single-stranded (ss) NA, especially members of superfamilies I and II [4]. Motion on ssNA
is analogous to the motion of a classical motor protein which moves with directional bias on an
infinite, one-dimensional lattice (figure 1). Single-stranded NA is polar, with one end labelled
the 3′ end and the other the 5′ end. Helicases which directionally translocate on ssNA are
referred to as 3′ → 5′ helicases or 5′ → 3′ helicases, depending on which direction they move
on the single strand. When the helicase is near the ss–double-strand (ds) junction, the helicase
can move the junction forward, creating additional ssNA ‘track’ as it moves.

A natural question in the study of helicases is how a protein may efficiently couple
translocation to unwinding. In the biochemical literature on helicases, this coupling is classified
as passive or active [15, 1, 3, 4]. A passive helicase waits for a thermal fluctuation that opens
part of the dsNA, and then moves forward, binds to the newly available ssNA, and prevents the
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Figure 1. Sketch of helicase on a nucleic acid strand. The helicase moves forward—toward the
junction where the dsNA strand opens—at rate k+ and backward at rate k−. The NA opens at rate
α and closes at rate β.

NA from closing. An active helicase directly destabilizes the dsNA, presumably by changing
the free energy of the ds state.

Many different types of helicase have been studied experimentally in some detail [1, 3, 16].
In recent years, single-molecule experiments have been performed for several helicases,
directly measuring helicase unwinding rates. The helicase RecBCD, which is also an
exonuclease (it degrades one of the unwound strands as it moves), has been studied by several
groups [17, 13, 18, 14, 19]. Interpretation of the RecBCD data is complicated by the fact
that RecBCD contains two helicases of opposite polarity, which move on both strands of the
DNA [20–22]. Bulk kinetic experiments on RecBCD have tried to determine the kinetic step
size by fitting the data to a model of helicase unwinding [23–26]; to date, physical steps of
this helicase have not been directly observed. Single-strand translocation and double-strand
unwinding were observed for Rep helicase using single-molecule FRET [27, 28]. The motion
of the RNA helicase DbpA has been observed with AFM [29]. Single-molecule experiments
on UvrD helicase have observed unwinding, and evidence of strand-switching [30]. Finally,
single-molecule FRET has been used to study the T4 replisome, the replication machinery
which includes the T4 helicase [31].

Although extensive biochemical and structural studies of helicases have been performed,
few descriptions of the physics of helicase unwinding exist. Previous work includes a ‘flashing
field’ model specific to hexameric ring helicases [32], a description of a helicase as a biased
random walk, which considered how the density of histones affects the random walk [33],
and a model where helicase motion is represented as a propagating front [34, 35]. Molecular
dynamics simulations have addressed properties of PcrA helicase [36]. Recent work includes
a proposal that HCV helicase functions by a ratchet mechanism [37], a theory for two coupled
motor proteins, proposed to describe RecBCD helicase [38], and a detailed description of
the mechanochemistry of T7 helicase [39]. A physical description of helicase unwinding of
NA has been proposed which contains both active and passive opening as different cases in a
general framework [40, 41]. Here we extend the description of helicase unwinding to allow
calculation of helicase processivity.

We represent a helicase by a particle which moves with directional bias on a one-
dimensional lattice (corresponding to the ssNA). The ss–ds junction represents an obstacle
on the lattice which blocks the helicase motion while also moving due to thermal fluctuations.
Our model describes different forms of the interaction between the particle and the mobile
obstacle. This scenario—a moving particle which interacts with an obstacle—also exists in
other biological systems. Peskin, Odell, and Oster introduced the ‘polymerization ratchet’ to
describe how a growing biological polymer can exert a force against a fluctuating obstacle [42].
They argued that the rate of polymerization is limited by the time required for the obstacle
to diffuse one monomer size. In the language of our model, described below, this scenario
corresponds to a hard-wall interaction potential between the growing tip and the obstacle.
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As we show here, other forms of interaction can show significantly different velocity and
processivity. Another example of the interaction of a motor with a second degree of freedom
is the kinesin-family motor protein MCAK, which induces microtubule depolymerization if it
interacts with the microtubule end [43–45]. This process is relevant in the generation of force
during the separation of chromosomes by the mitotic spindle. Finally, the interaction of two
motor proteins on a filament is another example for which our approach is relevant.

In this paper, we first review a simple description which captures both active and passive
unwinding by helicases [40, 41]. This framework considers a single helicase which does not
unbind from the NA strand, and permits us to calculate the unwinding velocity for a given
interaction potential (section 2). The unwinding velocity for a passive helicase with hard-wall
interaction potential is typically significantly slower than the ss translocation rate of the motor
far from the ss–ds junction. For a simple form of active opening, the velocity approaches
the single-strand translocation rate of the motor. In other words, an optimized active helicase
can unwind NA as fast as it translocates on ssNA. Comparable rates of ss translocation and
unwinding are therefore a signature of active opening.

We then extend this description to include a nonzero unbinding rate, and develop a simple
model of unbinding that captures the key effects. We assume that the unbinding rate may be
different for a helicase translocating on ssNA than for a helicase unwinding dsNA, because the
interaction potential alters the unbinding rate when the helicase is near the ss–ds junction. If
the interaction free energy is larger, then the helicase will unbind more quickly. In particular,
we assume that the free-energy difference between the bound state and the barrier to unbinding
is decreased by the amount of the interaction potential. We assume that the unbinding rate is
independent of the helicase biochemical state. The unbinding rate is determined only by the
height of the energy barrier separating the bound from the unbound states.

This model of unbinding allows us to calculate different measures of processivity
(section 3). We discuss the dependence of the processivity on the shape of the interaction
potential. The average attachment time of a helicase is particularly simple for a passive
helicase: the helicase unbinding rate during unwinding is equal to the unbinding rate during ss
translocation (section 4). By contrast, the helicase attachment time is lower during unwinding
than during ss translocation for an active helicase (section 5). Decreased attachment time
during unwinding is a signature of active unwinding.

Finally, in our conclusion, we discuss the connection between our results and experiments
(section 6).

2. Active and passive unwinding

In our simplified discrete description of helicase unwinding, the position of the motor—the
helicase—along its track is labelled by the integer n, and the position of the obstacle—the
ss–ds junction—is denoted m (figure 1). The motor is assumed to move toward increasing
n, and we expect n � m. The interaction between motor and obstacle is characterized by
an interaction energy U(m − n) which depends only on the obstacle–motor separation. We
assume U → 0 for m � n and U → ∞ for m < n.

One simple form of this potential is a hard-wall interaction of zero range: U = 0 for
m > n and U = ∞ for m � n. For a hard-wall potential, a motor which is near the obstacle
(n = m − 1) can advance only if the obstacle undergoes a fluctuation which increases m. This
situation corresponds to passive unwinding. For active unwinding, the interaction between the
motor and obstacle has nonzero range: when the helicase is near the ss–ds junction, both the
kinetics of NA opening and the helicase motion are altered by the interaction. We will discuss
interaction potentials which represent active unwinding below.
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We denote the rates of forward and backward hopping of the motor on the lattice far from
the obstacle by k+ and k−. The hopping rates for forward and backward motion of the junction
(corresponding to the opening and closing of dsNA) in the absence of the helicase are denoted
α and β. The ratio of these rates is given by α/β = e−�G , where �G is the free energy
difference per base between dsNA and two complementary ssNA strands. (Note that we use
units where kBT = 1.) This energy difference is positive when dsNA is thermodynamically
stable. For simplicity, we write a similar expression for the ratio of forward and backward
hopping rates of the helicase, k+/k− = e�µ. Here �µ denotes the chemical free energy of
ATP hydrolysis which drives helicase motion. This expression applies when each hydrolysis
event is tightly coupled to a forward step on the NA. We use this simplification here to discuss
principles which do not depend on the validity of this assumption. Note that an effective value
of �µ can be derived in certain limits from a more detailed description of the mechanochemical
coupling [41].

The interaction between the helicase and the ss–ds junction modifies the hopping rates.
We express the ratios of these rates as

β j

α j−1
= β

α
e−[U( j−1)−U( j)], (1a)

k+
j

k−
j−1

= k+

k− e−[U( j−1)−U( j)], (1b)

where α j , β j , k+
j and k−

j are the position-dependent rates when the helicase and the junction
are separated by j = m − n bases. To fully specify the position-dependent rates we write

k+
j = k+e− f [U( j−1)−U( j)], (2a)

k−
j−1 = k−e−( f −1)[U( j−1)−U( j)], (2b)

β j = βe− f [U( j−1)−U( j)], (2c)

α j−1 = αe−( f −1)[U( j−1)−U( j)], (2d)

where the parameter f describes the energy barrier of the transitions. For a one-dimensional
reaction, f corresponds to the fractional distance of the peak of the barrier between the two
adjacent states and thus 0 < f < 1.

For the simple case of a hard-wall potential (figure 2(a)), the helicase prevents NA closing
when j = 1. Thereforeβ1 = 0 because U(0) is infinite. Infinite U(0) also implies k+

1 = 0: the
helicase must wait until a thermal fluctuation opens the NA before advancing. An interaction
potential with nonzero range corresponds to enzymatically assisted opening. For simplicity,
we use a linear potential with range N and slope U0. The discretized potential is shown in
figures 2(b) and (c). The potential energy increases in N steps, each of energy U0, before a
hard-wall is reached. The increase in energy due to this potential facilitates opening of the
dsNA: U( j − 1) > U( j) implies β j/α j−1 < β/α. In addition, the interaction energy slows
helicase forward motion. We assume U → 0 for j → ∞, so that no interaction occurs for
large separations.

The probability P( j, l, t) that the helicase and junction are at separation j and midpoint
position l = m + n satisfies the master equation

dP( j, l, t)

dt
= −(α j + β j + k+

j + k−
j )P( j, l) + α j−1 P( j − 1, l − 1)

+ β j+1 P( j + 1, l + 1) + k+
j+1 P( j + 1, l − 1) + k−

j−1 P( j − 1, l + 1). (3)

Since the rates depend only on j , we define the distribution P j = ∑
l P( j, l, t). After a

relaxation time which depends on the rates α, β, k+, and k−, the distribution P j relaxes to a
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Figure 2. Interaction energies between the helicase and ss–ds junction as a function of their distance
m − n in number of bases. (a) Hard-wall potential. (b) Potential with a single step. (c) Potential
with three steps.

stationary state which satisfies the recursion relation

P j+1 = k−
j + α j

k+
j+1 + β j+1

P j . (4)

This steady-state distribution can be used to calculate the mean velocity (bp s−1) [40, 41]

v = 1
2

∑

j

(k+
j + α j − k−

j − β j)P j . (5)

This expression for v has a simple physical interpretation—the quantity in parentheses is the
unwinding rate at separation j , which is multiplied by the probabilityP j of finding the complex
at separation j . The effective diffusion coefficient which characterizes velocity fluctuations is

D = 1
4

∑

j

(k+
j + α j + k−

j + β j)P j . (6)

We assume that the helicase remains bound to the NA for all time. Therefore the expressions
for v and D are true steady-state values reached by a real system in the long-time limit. In the
results below, unwinding velocities of a bound helicase are calculated under this steady-state
assumption.

3. Processive and unprocessive unwinding

In section 2 we assumed that the motor never unbinds from the track, so the model represents
a motor which is infinitely processive. Real motors have finite processivity—they unbind
eventually. This effect can be incorporated in our description by introducing the rate of
unbinding γ . We assume that γ depends on the separation j between motor and obstacle, but
has no other position or time dependence. For a repulsive potential such as the linear potential
discussed above, when the motor and obstacle are close to each other the free energy of motor
and junction is increased. This typically leads to an increased rate of unbinding. This effect
can be described by writing [46]

γ j = γ eU( j). (7)

Here γ > 0 is the detachment rate for motion on a single strand far from the junction.
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The time evolution of the probability distribution is then described by

dP( j, l)

dt
= −(k+

j + k−
j + α j + β j + γ j)P( j, l) + α j−1 P( j − 1, l − 1) + β j+1 P( j + 1, l + 1)

+ k+
j+1 P( j + 1, l − 1) + k−

j−1 P( j − 1, l + 1). (8)

Note that this expression differs from equation (3) only in the additional term proportional to
the unbinding rate γ j . The other rates are unchanged as defined above, in equation (2). We
assume that at time t = 0 the helicase and junction have a specific position determined by
j = j0 and l = l0. Therefore,

P( j, l, t = 0) = δ j j0δll0 , (9)

where δ jk = 1 for j = k and 0 otherwise.

3.1. Processivity and attachment time

We characterize the processivity by the average attachment time 〈τ 〉 of the motor and by
both the translocation processivity 〈δn〉, which is the average number of forward steps taken
by the helicase during one binding event, and the unwinding processivity 〈δm〉, which is the
average number of NA bp unwound during one helicase binding event. These measures of
processivity depend on initial conditions. If the helicase binds near the ss–ds junction, then
the translocation and unwinding processivities are similar. However, if the helicase binds to
a ss region far from the junction, then the unwinding processivity can be much smaller than
the translocation processivity. If the NA can close on average under these conditions, the
corresponding unwinding processivity becomes negative.

The mean attachment time is defined as

〈τ 〉 =
∫ ∞

0
dt t

∑

j,l

γ j P( j, l, t). (10)

Similarly, the translocation and unwinding processivities can be defined by

〈δn〉 = 〈δl〉 − 〈δ j〉
2

, (11)

〈δm〉 = 〈δl〉 + 〈δ j〉
2

. (12)

Here, the average changes in j and l during unwinding are

〈δ j〉 =
∫ ∞

0
dt

∑

j,l

( j − j0)γ j P( j, l, t), (13)

〈δl〉 =
∫ ∞

0
dt

∑

j,l

(l − l0)γ j P( j, l, t). (14)

The translocation processivity 〈δn〉 = 〈n − n0〉 is the mean number of steps the motor takes
in one direction before detaching and the unwinding processivity 〈δm〉 = 〈m − m0〉 is the
mean number of steps the obstacle moves per binding event. The above expressions can be
simplified using Laplace transforms [46]. The Laplace transform of P( j, l, t) is

P̃j,l(s) =
∫ ∞

0
dt e−st P( j, l, t). (15)

Summing equation (8) over j and l, we obtain
∑

j,l

dP( j, l, t)

dt
=

∑

j,l

−γ j P( j, l, t). (16)
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We can thus simplify the expression for 〈τ 〉 in equation (10) by integrating by parts:

〈τ 〉 = −
∑

j,l

∫ ∞

0
dt t

dP( j, l, t)

dt
,

=
∑

j,l

∫ ∞

0
dt P( j, l, t). (17)

The boundary terms vanish because at the lower boundary t = 0, while for long times the
probability approaches zero at all sites because the motor unbinds.

Defining the coefficients

Q j,l = P̃j,l(s = 0) =
∫ ∞

0
dt P( j, l, t), (18)

the average attachment time can be expressed as

〈τ 〉 =
∑

j,l

Q j,l . (19)

Similarly, the j and l processivities are given by

〈δ j〉 =
∫ ∞

0
dt

∑

j,l

( j − j0)γ j P( j, l, t), (20)

=
∑

j,l

( j − j0)γ j Q j,l, (21)

and

〈δl〉 =
∑

j,l

(l − l0)γ j Q j,l . (22)

We therefore need to calculate Q j,l , the Laplace-transformed probability at s = 0, to obtain
the average attachment time and the mean change in j and l during a single binding event.
The translocation and unwinding processivities are obtained by equations (11) and (12).

The coefficients Q j,l are obtained by solving the Laplace transform of equation (8) for
s = 0:
∫ ∞

0
dt e−st dP( j, l)

dt
= −(k+

j + k−
j + α j + β j + γ j)P̃j,l(s) + α j−1 P̃j−1,l−1(s) + β j+1 P̃j+1,l+1(s)

+ k+
j+1 P̃j+1,l−1(s) + k−

j−1 P̃j−1,l+1(s). (23)

Note that the rates have no explicit time dependence. As above, integrating by parts leads to
∫ ∞

0
dt e−st dP( j, l)

dt
= P( j, l, t)e−st

∣
∣∞
0 + s

∫ ∞

0
dt e−st P( j, l, t),

= −P( j, l, t = 0) + s P̃j,l(s),

= −δ j j0δll0 + s P̃j,l(s). (24)

Here we have used the initial condition, equation (9). Thus the Laplace-transformed equations
are

− δ j j0δll0 + s P̃j,l(s) = −(k+
j + k−

j + α j + β j + γ j)P̃j,l(s) + α j−1 P̃j−1,l−1(s) + β j+1 P̃j+1,l+1(s)

+ k+
j+1 P̃j+1,l−1(s) + k−

j−1 P̃j−1,l+1(s). (25)

In general, these equations could be solved for arbitrary s. We only require the Laplace-
transformed probability evaluated at s = 0. The coefficients Q j,l satisfy the equation

δ j j0δll0 = (k+
j + k−

j + α j + β j + γ j)Q j,l − α j−1 Q j−1,l−1 − β j+1 Q j+1,l+1

− k+
j+1 Q j+1,l−1 − k−

j−1 Q j−1,l+1. (26)
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These equations describe a discrete drift-plus-diffusion system in two dimensions with an
inhomogeneous term.

Equation (26) can be solved by a product ansatz

Q j,l = R j Tl . (27)

Using this ansatz in equation (26), and choosing the normalization
∑

l Tl = 1 and
∑

j γ j R j =
1, the coefficients R j satisfy

− δ j j0 = −(k+
j + k−

j + α j + β j + γ j )R j + (α j−1 + k−
j−1)R j−1 + (β j+1 + k+

j+1)R j+1. (28)

The coefficients Tl satisfy the equation

δll0 = (p + q + 1)Tl − pTl−1 − qTl+1. (29)

Here we have defined

p =
∑

j

(α j + k+
j )R j , (30)

q =
∑

j

(β j + k−
j )R j . (31)

3.2. Simplified expressions for processivity

The average attachment time 〈τ 〉 and the quantities 〈δ j〉 and 〈δl〉 can be expressed in terms of
the R j and Tl :

〈τ 〉 =
∑

j

R j , (32)

〈δ j〉 =
∑

j

( j − j0)γ j R j , (33)

〈δl〉 =
∑

l

(l − l0)Tl . (34)

The solutions to equation (28) depend on the shape of the interaction potential. Some
examples are discussed below. However, in general equation (29) can be solved formally.
Equation (29) is a second-order, linear, inhomogeneous difference equation. Since we have
assumed translational invariance in l, the resulting solution is independent of l0. Therefore we
choose l0 = 0 for convenience. The solutions have the form Tl = yl for l �= 0. Using this
ansatz, y obeys a quadratic equation

y2 − (1 + a)y + (a − b) = 0, (35)

where a = (1 + p)/q and b = 1/q . We denote by y+ and y− the positive and negative roots
of equation (35). For l � 0, Tl = A′yl−, while for l � 0 the solution is Tl = Ayl

+, since Tl

must vanish for l → ±∞. Requiring that T0 is the same for both expressions implies A = A′.
Finally, equation (29) for l = 0 leads to

A = b

(

1 + a − y− − a − b

y+

)−1

. (36)

Formally, we can use equation (34) to determine 〈δl〉:
〈δl〉 =

∑

l

lTl, (37)

= A
∞∑

l=1

(
lyl

− − ly−l
+

)
, (38)

= A

[
y−

(1 − y−)2
− y+

(1 − y+)2

]

. (39)
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Note, however, that A and y± depend on the shape of the interaction potential via the coefficients
R j . Once these coefficients have been determined, the quantities 〈τ 〉, 〈δ j〉, and 〈δl〉, and
therefore 〈δn〉 and 〈δm〉, can easily be obtained.

4. Velocity and processivity for a hard-wall interaction potential

4.1. Velocity

For the hard-wall potential, the unwinding velocity is given by

vHW = αk+ − βk−

β + k+
. (40)

The velocity is positive whenever k+/k− > β/α, that is, the free energy change �G which
drives NA closing must be smaller than the chemical potential �µ of ATP hydrolysis. The
maximum vHW occurs for a unidirectional helicase (k− = 0). This upper bound is

vmax
HW = α

β

(
k+

1 + k+/β

)

≈ α

β
k+, (41)

where the approximation holds if k+ 	 β. Thus a passive helicase unwinds more slowly than
it translocates on ssNA by a factor ≈α/β. This result has a simple interpretation: the base pair
adjacent to the helicase has a probability α/β of being open. Thus, when the helicase attempts
a forward hop it succeeds with probability α/β.

4.2. Processivity

For a hard-wall potential, the average attachment time, translocation processivity, and
unwinding processivity can be calculated analytically. We solve equation (28) for R j for
the simple case j0 = 1. For j > 1, the rates are independent of j and we have

R j+1 = (1 + d)R j + (d − e)R j−1, (42)

where we have defined

d = α + k− + γ

β + k+
, (43)

e = γ

β + k+
. (44)

This equation has solutions of the form R j = x j
±, where the x± are the positive and negative root

of the quadratic equation x2 −(1+d)x +(e−d) = 0. The boundary condition that R j vanishes
for large j imposes R j = Bx j

−. From equation (28) at j = 1, we find (β+k+)(R2−d R1) = −1
and

B = [x−(β + k+)(d − x−)]−1. (45)

With these expressions, 〈τ 〉 = γ −1. This simple result follows since for the hard-wall case
γ j = γ is independent of the separation j .

The average change in j is

〈δ j〉 = x−
1 − x−

. (46)

To determine 〈δl〉, we note that for the hard-wall case

p = γ −1(α + k+x−), (47)

q = γ −1(k− + βx−). (48)
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Figure 3. The translocation processivity 〈δn〉 and unwinding processivity 〈δm〉 as a function
of the initial separation j0 between motor and junction. When j0 = 1, the translocation and
unwinding processivities are approximately equal. As the separation j0 increases, the translocation
processivity 〈δn〉 is approximately constant, while the unwinding processivity 〈δm〉 decreases. The
parameters are α = 105 s−1, β = 7 × 105 s−1, k+ = 1 base s−1, k− = 0.01 base s−1, and
γ = 0.03 s−1. Calculations were done numerically using a grid size of M = 100 in j .

The quantity 〈δl〉 now follows from equation (39). In the hard-wall case, the translocation
processivity is approximately the unwinding velocity times the attachment time: 〈δm〉 ≈ v〈τ 〉,
as we would expect for position-independent detachment. Note that this result depends on
initial conditions and is valid for j0 = 1.

When j0 = 1, the translocation and unwinding processivities are approximately equal. As
the separation between the motor and obstacle increases, the unwinding processivity drops. A
negative unwinding processivity reflects net backwards motion of the obstacle while the motor
is bound. For a large separation between the motor and obstacle, they have no effect on each
other. In figure 3, the processivities are shown as a function of j0 with other parameters fixed.

The helicase adjacent to the junction can only move when the junction opens. Therefore,
the velocity and the processivities depend strongly on the base pair binding free energy �G.
The velocity and the measures of processivity are displayed in figure 4 as a function of �G. In
this calculation, we assume that β is constant and α = βe−�G . The value �G = 2 corresponds
to the sequence averaged value for typical genomic DNA. For small �G, the processivity
increases dramatically, because the binding energy driving NA closing is decreased.

5. Velocity and processivity of an active helicase

5.1. Velocity

Active opening can be represented by an interaction potential with nonzero range between
junction and helicase. For simplicity, we choose linear potentials characterized by a range of
N steps and a step height U0 (figure 2). The repulsive interaction between helicase and junction
implies that for small separation j within the range of the potential the rates of junction opening
and helicase backward hopping are increased. The unwinding velocity for such a potential,
relative to the hard-wall case, is [40, 41]

vN

vHW
= cN (e−U0 − c) + (1 − c)e− f U0(e−NU0 − cN )

cN (e−U0 − c) + (1 − c)e−U0(e−NU0 − cN )
. (49)

Note that the helicase cannot increase the unwinding rate beyond a certain limit. Assuming
0 < f < 1, the unwinding rate has an upper bound vN � c−1vHW, where c = (α+k−)/(β+k+).
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Figure 4. Velocity and processivity as a function of the base-pairing energy �G for a hard-wall
potential. We varied the opening rate of the ss–ds junction, assuming that the closing rate is
constant. Therefore α = βe−�G . Left, unwinding rate vHW/vss as a function of �G . Right,
translocation and unwinding processivity as a function of �G . Parameters are β = 7 × 105 s−1,
k+ = 1 base s−1, k− = 0.01 base s−1, γ = 0.01 s−1, and j0 = 1.
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Figure 5. Variation of unwinding velocity, average attachment time, and unwinding processivity as
a function of step height for a one-step potential. The parameters are α = 105 s−1, β = 7×105 s−1,
k+ = 1 base s−1, k− = 0.01 base s−1, and, for the processivity calculation, γ = 0.01 s−1, j0 = 1,
and grid size M = 100.

The unwinding velocity for one step (N = 1) is displayed in figure 5(a) as a function
of the step height U0 for different values of the parameter f . For small U0, the unwinding
rate increases with increasing step height U0 because the presence of the step facilitates NA
opening. For large step heights, the unwinding rate decreases, because the repulsive potential
reduces the rate of helicase forward motion. The unwinding velocity for different values of
N is shown in figure 6(a) as a function of U0. For increasing N , the opening rate becomes
more sensitive to U0 and the maximum occurs at higher values. For large N , the maximum
unwinding rate occurs for U∗ ≈ − ln c ≈ �G. In this case fastest unwinding occurs when the
slope of the potential matches the base-pairing energy of the NA.

5.2. Processivity for active unwinding

Active unwinding results in a decrease of the mean attachment time, as compared to ss
translocation or passive opening for which 〈τ 〉 = γ −1. This is a consequence of the repulsive
interaction potential which leads to increased unbinding rate for small j . The dependence of
the average attachment time on the step height is displayed in figure 5(b) for N = 1. For a
potential with one step, 〈τ 〉 decreases rapidly with step height to a plateau value ≈0.2γ −1.
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Figure 6. Variation of velocity, average attachment time, and unwinding processivity with step
height, for potentials with varying numbers of steps. The parameters are f = 0.05, α = 105 s−1,
β = 7 × 105 s−1, k+ = 1 base s−1, k− = 0.01 base s−1, and, for the processivity calculation,
γ = 0.01 s−1, j0 = 1, and M = 100.

This decrease is independent of f , since the unbinding rate does not depend on the barrier
between states of different j . Note that the limits U0 → 0 and U0 → ∞ do not give the same
result for the processivity because the initial conditions are different: U0 → 0 corresponds to
a hard-wall potential with j0 = 1, while U0 → ∞ corresponds to a hard-wall potential but
with j0 = 0.

The decrease of 〈τ 〉 for increasing U0 is similar but even more pronounced for potentials
with longer range, as shown in figure 6(b). For N � 2, the average attachment time rapidly
decreases to < 0.01γ −1. Decreased attachment time during unwinding (as compared to ss
translocation) is a strong signature of active unwinding.

Because the attachment time decreases with increasing step height, the translocation and
unwinding processivities also tend to decrease. However, for a one-step potential 〈δn〉 and
〈δm〉 decrease slowly for increasing step height when f is small (figure 5(c)). This occurs
because the rapid increase in the velocity approximately cancels the decrease in attachment
time, leading to a processivity that is relatively insensitive to step height. For larger numbers of
steps, a decrease in 〈δm〉 occurs as U0 increases (figure 6(c)). These curves are approximately
exponentially decreasing functions, with a decay constant determined by f . Small f means
that the processivity varies slowly in the biologically plausible range between 0 and 20 kBT .
Note that above U0 = 20 little or no increase in the velocity can be achieved by increasing the
step size.

5.3. Dependence on base-pair binding energy

The velocity and attachment time are sensitive to the mean free energy per base pair �G. We
assume that the rate β is constant and α = βe−�G . For simplicity, we show results only for
a potential with N = 1. The dependence of v and 〈τ 〉 on �G depends on the step height
U0. For a hard-wall potential, the velocity varies exponentially as a function of �G. As
U0 increases, the velocity becomes less sensitive to �G (figure 7(a)). Thus for U0 = 5 the
displayed curve decreases slowly with increasing �G. The attachment time 〈τ 〉 shows the
opposite trend: for a hard-wall interaction potential, the attachment time is independent of
�G. The attachment time is also weakly dependent on �G for small U0, while for larger
U0, 〈τ 〉 varies more rapidly (figure 7(b)). The processivity 〈δm〉 as a function of �G exhibits
the same behaviour independent of U0 (figure 7(c)), because the variation in velocity and
attachment time as a function of step height approximately cancel. Therefore, measurements
of velocity and attachment time have greater power to elucidate aspects of the potential.
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Figure 7. Unwinding velocity, attachment time, and unwinding processivity versus free-energy
per base pair for a one-step potential. We fix the closing rate and therefore α = βe−�G . The
parameters are f = 0.05, β = 7 × 105 s−1, k+ = 1 base s−1, k− = 0.01 base s−1, and, for the
processivity curves, γ = 0.01 s−1, j0 = 1, and M = 100.

6. Discussion

In this paper, we have extended a model for the unwinding of double-stranded nucleic acids by
helicases to allow calculation of helicase processivity. An interaction potential describes how
the helicase and NA ss–ds junction affect each other. We assume that the local unbinding rate of
the helicase depends exponentially on the interaction potential. The mean attachment time, the
translocation processivity, and the unwinding processivity depend on initial conditions: if the
position where the helicase binds to the ssNA is varied, the processivity changes. Therefore,
in different experimental situations different values of the processivity could be obtained.

A hard-wall interaction potential describes passive unwinding. In this case, the unwinding
velocity vHW is significantly slower than the single-strand translocation rate of the motor
far from the ss–ds junction. The average attachment time for the hard-wall potential is
〈τ 〉 = γ −1 since the unbinding rate γ is independent of position. In other words, the mean
attachment time of a passive helicase is the same whether the helicase translocates on ssNA
or unwinds dsNA. For initial conditions where the helicase and junction are adjacent to each
other, 〈δm〉 ≈ vHW〈τ 〉—the translocation processivity is approximately the unwinding velocity
times the attachment time. The translocation processivity is lower for a passive helicase during
unwinding (relative to ss translocation); this decrease occurs solely because of the decrease in
velocity of the helicase, while the average attachment time is unchanged.

We represent active unwinding by a linearly increasing potential of finite range,
characterized by the step height U0 and the number of steps N . A range of up to 10 bases is
motivated by the typical size of a helicase monomer. Indeed, structures determined by x-ray
diffraction suggest that a helicase can interact with five to ten bases in the ds region of the ss–ds
junction [47–53]. We find that for an active helicase the unwinding velocity can approach the
single-strand translocation rate of the motor. In other words, the helicase can unwind as fast
as it translocates on ssNA.

In contrast to the passive case, the attachment time of an active helicase is shorter during
unwinding than during ss translocation. Decreased attachment time during unwinding is
a general property of actively opening helicases in our model. Our representation of the
unbinding rate assumes that the helicase is bound in a single potential well with a barrier
separating the bound state from the unbound state. This model is an approximation, because
the helicase exists in different biochemical states throughout the ATP hydrolysis cycle. Each
state might experience a different free-energy barrier to unbinding. In principle, if the relative
time spent in each of these states changes (for example, as the ATP concentration is varied),
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the unbinding rate might vary as well. However, experimental evidence suggests that our
simplified model is a good approximation. Single-molecule measurements on RecBCD [13]
and UvrD [30] find that the average attachment times of these helicases are independent of
ATP concentration. Therefore, the assumption that the potential well for a bound helicase is
independent of hydrolysis state is consistent with experiments.

In our model, an actively unwinding helicase shows a decrease in attachment time.
Previous work has suggested that high helicase processivity may require two helicase–NA
binding sites—one on the ssNA, and another on the dsNA [1, 54, 55]. In this mechanism, a
helicase may unbind from the ssNA but remain bound at the dsNA site. The opportunity for
dsNA binding is absent when the helicase translocates on ssNA. This effect can be incorporated
in our description by introducing an extra binding energy and consequently reduced detachment
rate if the helicase is close to the junction.

Both the velocity of unwinding and measures of processivity are sensitive to �G, the
average free energy of NA base-pair opening. The value of �G can be controlled in single-
molecule experiments where tension is applied to the ends of the NA, by the concentration of
ss-binding proteins in the buffer solution, and by varying the base composition of the NA.

Measurements of helicase velocity and processivity as a function of �G can provide
information about the interaction between the helicase and the NA ss–ds junction. Because
the rate of passive unwinding is determined by the opening probability of the base pair at
the junction, the velocity and the processivity decrease rapidly as �G increases. For active
opening, the unwinding velocity as a function of �G depends sensitively on the step height:
while for larger values ofU0 the velocity depends only weakly on�G, this dependence becomes
strong for small U0. The average attachment time 〈τ 〉 behaves differently. For a hard-wall
interaction potential, the attachment time is independent of �G. For active unwinding, the
attachment time depends strongly on �G for larger U0 and tends to decrease for increasing �G.
The effects of �G on velocity and attachment time approximately cancel when computing the
processivities, so that the behaviour of 〈δm〉 as a function of �G is similar for different step
heights. Galletto et al found that the unwinding rate of DnaB helicase depends on the DNA
GC content [56]. Varying the fraction of GC versus AT base pairs changes the average �G
of the NA template. The dependence on GC content found in these experiments would be
expected in our model for an interaction potential with a small (or zero) step height.

For the helicase PcrA, crystal structures suggest that the protein binds both the ss and
dsDNA and distorts the double helix [51]. If the protein residues which have been proposed
to interact with the dsDNA are mutated, the mutant proteins hydrolyse ATP in the presence of
ssDNA at a rate similar to the wild-type protein, but unwind dsDNA 10–30 times more slowly
than wild type [57]. In the language of our analysis, the mutations may alter the interaction
potential between junction and helicase such that it resembles the passive (hard-wall) case. In
our description, changing from a situation of active opening with optimally chosen step height
and step number to a passive case with hard-wall potential typically leads to a decrease of the
unwinding rate by a factor of c−1 ≈ 7. Further altering the potential to an attractive linear
potential [40] with a well depth of 2 kBT decreases the unwinding rate by a factor of 35. Small
changes to the interaction potential can thus cause the unwinding rate to vary by a large factor.

In single-molecule experiments on UvrD helicase, Dessinges et al observed the unwinding
of DNA molecules by UvrD at different forces [30]. In these experiments, the end-to-end
extension of a tethered DNA molecule changes with time as a result of the transformation of
dsDNA into ssDNA by the helicase. These single-molecule experiments found that unwinding
can be induced by UvrD monomers. However, bulk experiments have suggested that helicase
activity requires UvrD dimers [58–60], even though UvrD monomers have a large processivity
(2400 bases) when translocating on ssDNA [60]. The reasons for this difference are not
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currently understood. The velocity of unwinding was shown by Dessinges et al to depend
on ATP concentration [30]. In addition, events were observed where the DNA slowly closed
at an ATP-dependent rate. It was suggested that these events occur when a UvrD molecule
bound near the ss–ds junction switches from one DNA single strand to the other. Because
the two single strands have opposite polarity, the helicase might move away from the junction
after strand switching. In this interpretation, the re-zipping events provide information on ss
translocation of UvrD. The re-zipping velocity would be expected to be greater than or equal
to the ss translocation rate of UvrD, because the energetically favourable re-annealing of the
two DNA strands behind the helicase might accelerate the protein’s motion.

We can relate three key measurements of UvrD motion by Dessinges et al [30] to the
behaviour of active unwinding discussed here. First, the experiments show that the re-zipping
velocity and the unwinding velocity are comparable in certain situations: the re-zipping
velocity is approximately 15% larger than the unwinding rate at 35 pN applied force. Second,
the effective detachment rate is about ten times larger during unwinding than during re-zipping
(at 35 pN). Third, the measured unwinding velocity is only weakly dependent on �G. The
velocity was measured for 3 and 35 pN applied force on the DNA. The first case corresponds
to an increase of �G, while in the second case �G decreases [30]. If we interpret re-zipping
events as approximating the ss translocation behaviour of UvrD, all three of these experimental
observations are consistent with our description of an active helicase.

The comparison of these data to bulk measurements reveals agreement in the unbinding rate
during ss translocation but not in the unwinding rate. The unbinding rate of UvrD monomers
translocating on ssDNA measured in bulk by Fischer et al is comparable to (two times larger
than) the unbinding rate measured by Dessinges et al for UvrD monomers during re-zipping
events [60]. Fischer et al found that the UvrD unwinding rate was approximately three
times slower than the ss translocation rate [60]. However, the bulk experiments of Fischer
et al observed unwinding only by UvrD dimers, whereas the single-molecule experiments of
Dessinges et al observed unwinding by UvrD monomers. Therefore the unwinding data may
not be directly comparable.

Our physical theory describes how helicase unwinding velocity and processivity depend
on the interaction potential between the helicase and the ss–ds junction. This type of theory
includes more detail than models based on kinetic states and transitions between them, while
neglecting many details present in all-atom simulation models. Physical descriptions of the
type we describe here complement other modelling frameworks. Simplifying some aspects
of the system—for example, our choice to neglect the biochemical states which occur during
helicase ss translocation—allows us to focus on the coupling between helicase translocation
and NA unwinding. This level of detail may allow one to relate observed helicase behaviour
to simple physical mechanisms, and thereby gain more insight into the parameters which are
important for helicase behaviour. For example, experiments on UvrD suggest that this helicase
unbinds more rapidly when unwinding dsDNA than during ss translocation [30]. Our model
gives a physical picture for why this might happen: an interaction potential corresponding to
active opening naturally leads to accelerated helicase unbinding.

Our simple description neglects several effects. We ignore deformations of the NA strand,
such as bending and torsion,and treat the strand as a rigid structure. The helicase is described by
forward and backward rates only; we neglect the details of the protein’s biochemical states. In
addition, we ignore the effects of the NA base sequence on opening. These effects are believed
to be weak for most helicases [1], although sequence dependence has been demonstrated for
Rho [61] and DnaB [56] helicases. Recent work by Kafri, Lubensky and Nelson [62] shows
that a motor protein which translocates on a random track can show interesting behaviour near
the stall force.
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